- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Fejer, M_M (2)
-
Heydari, David (2)
-
Jankowski, Marc (2)
-
Langrock, Carsten (2)
-
Mabuchi, Hideo (2)
-
McKenna, Timothy_P (2)
-
Mishra, Jatadhari (2)
-
Ng, Edwin (2)
-
Safavi-Naeini, Amir_H (2)
-
Stokowski, Hubert_S (2)
-
Hwang, Alexander_Y (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Thin-film lithium niobate (TFLN) is an emerging platform for compact, low-power nonlinear-optical devices, and has been used extensively for near-infrared frequency conversion. Recent work has extended these devices to mid-infrared wavelengths, where broadly tunable sources may be used for chemical sensing. To this end, we demonstrate efficient and broadband difference frequency generation between a fixed 1-µm pump and a tunable telecom source in uniformly-poled TFLN-on-sapphire by harnessing the dispersion-engineering available in tightly-confining waveguides. We show a simultaneous 1–2 order-of-magnitude improvement in conversion efficiency and ∼5-fold enhancement of operating bandwidth for mid-infrared generation when compared to equal-length conventional lithium niobate waveguides. We also examine the effects of mid-infrared loss from surface-adsorbed water on the performance of these devices.more » « less
-
Mishra, Jatadhari; McKenna, Timothy_P; Ng, Edwin; Stokowski, Hubert_S; Jankowski, Marc; Langrock, Carsten; Heydari, David; Mabuchi, Hideo; Fejer, M_M; Safavi-Naeini, Amir_H (, Optica)Periodically poled thin-film lithium niobate (TFLN) waveguides have emerged as a leading platform for highly efficient frequency conversion in the near-infrared. However, the commonly used silica bottom-cladding results in high absorption loss at wavelengths beyond 2.5 µm. In this work, we demonstrate efficient frequency conversion in a TFLN-on-sapphire platform, which features high transparency up to 4.5 µm. In particular, we report generating mid-infrared light up to 3.66 µm via difference-frequency generation of a fixed 1 µm source and a tunable telecom source, with normalized efficiencies up to . These results show TFLN-on-sapphire to be a promising platform for integrated nonlinear nanophotonics in the mid-infrared.more » « less
An official website of the United States government
